

NSP32 SDK

PRISM GUI Application

User Manual

ver 1.7

nanoLambda

2

© nanoLambda 2017

IMPORTANT NOTICE

nanoLambda Korea and its affiliates (“nanoLambda”) reserve the right to make corrections,

modifications, enhancements, improvements, and other changes to its products and services at any

time and to discontinue any product or service without notice. Customers should obtain the latest

relevant information before placing orders and should verify that such information is current and

complete. All products are sold subject to nanoLambda’s terms and conditions of sale supplied at the

time of order acknowledgment. Customers are responsible for their products and applications using

any nanoLambda products. nanoLambda does not warrant or represent that any license, either

express or implied, is granted under any nanoLambda patent right, copyright, mask work right, or

other nanoLambda intellectual property right relating to any combination, machine, or process in which

nanoLambda products or services are used. Information published by nanoLambda regarding third-

party products or services does not constitute a license from nanoLambda to use such products or

services or a warranty or endorsement thereof. Use of such information may require a license from a

third party under the patents or other intellectual property of the third party, or a license from

nanoLambda under the patents or other intellectual property of nanoLambda. Reproduction of

nanoLambda information in nanoLambda documents or data sheets is permissible only if reproduction

is without alteration and is accompanied by all associated warranties, conditions, limitations, and

notices. nanoLambda is not responsible or liable for such altered documentation. Information of third

parties may be subject to additional restrictions. Resale of nanoLambda products is not allowed

without written agreement. Decompiling, disassembling, reverse engineering or attempt to reconstruct,

identify or discover any source code, underlying ideas, techniques or algorithms are not allowed by

any means. nanoLambda products are not authorized for use in safety-critical applications. Buyers

represent that they have all necessary expertise in the safety and regulatory ramifications of their

applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and

safety-related requirements concerning their products and any use of nanoLambda products in such

safety-critical applications, notwithstanding any applications-related information or support that may be

provided by nanoLambda. Further, buyers must fully indemnify nanoLambda and its representatives

against any damages arising out of the use of nanoLambda products in such safety-critical

applications.

3

© nanoLambda 2017

Table of Contents
1. Introduction ... 4

1.1. About Prism .. 4

1.2. Features ... 4

1.3. System Requirements ... 5

2. NSP32 SDK Installation ... 6

2.1. Hardware installation .. 6

2.2. NSP32 SDK installation and Configuration ... 7

2.3. Run Prism GUI Application ... 9

3. UI Components of Prism ... 10

3.1. GUI Layouts ... 10

3.2. UI Components ... 11

4. Set shutter speed .. 11

4.1. Find optimal SS (Shutter speed) ... 11

4. Spectrum Data Acquisition ... 13

4.1. Intensity Level Validation .. 13

4.2. Shutter Speed (Exposure Time) Control ... 14

4.3. Find Optimal Shutter Speed with AE ... 15

4.4. Frame Averaging .. 15

4.5. Background Data Acquisition ... 16

4.6. Spectrum Data Acquisition ... 16

5. Data Visualization ... 18

6. Menus .. 20

6.1. ‘File’ Menu ... 20

6.2. 'View' Menu .. 23

6.3. ‘Help’ Menu .. 24

7. Frequently Asked Questions ... 25

4

© nanoLambda 2017

1. Introduction

1.1. About Prism

Prism GUI is a stand-alone Qt-based GUI application from nanoLambda and implemented based on

proprietary software libraries (NSP32 SDK) by nanoLambda. Prism GUI provides a convenient way for users to

familiarize themselves with various functions of NSP32 spectral sensor.

Fig 1-1 Prism GUI application

If you connects NSP32 ADK device to USB port on the user’s computer with the provided USB cable and

executes the Prism GUI application, Prism GUI will detect NSP32 ADK device automatically. For same

platforms like Windows OS, it is necessary that the user installs the USB driver for the NSP32 spectral sensor

before using it.

1.2. Features

The main features of Prism GUI s/w are :

 Spectrum acquisition function (single and continuous)

 Shutter speed (exposure time) change function

 Optimal shutter speed finding function

 Frame moving average function

 Spectrum visualization function (hollow, color-filled, and rainbow-filled spectrum graph)

5

© nanoLambda 2017

1.3. System Requirements

Prism GUI application supports Windows, Linux(Ubuntu) and Mac OS operating systems. You can install

Prism GUI application by unzipping NSP32 SDK package on your system . The path for Prism GUI application

is '/nanolambda/NSP32_SDK/prism_gui/[platform]'. For example, you can find an executable (32-

bit version) for Prism GUI application and related DLLs for Windows OS under

'/nanolambda/NSP32_SDK/prism_gui/win32'.

Fig 1-2 Prism GUI executable and related files

Table 1-1 Recommended System Configuration

OS

Windows: 7, 8, 8.1 and 10 (32 and 64-bit)

Ubuntu: 14.04 or higher

MacOS: OS X 10.10 (Yosemite) or later

CPU Intel i3 or Higher with 1.5GHz or faster clock speed

Memory >= 512 MB

Graphics >= 1024x768 with 24-bit true colors

HDD
>= 500 MB free HDD space(an additional 100 MB is needed

during installation only to accommodate the initial setup files)

Peripheral 1 USB port which can support USB 2.0 or higher

Other

6

© nanoLambda 2017

2. NSP32 SDK Installation

In order to acquire spectral data using the NSP32 spectral sensor and the Prism GUI application, the following

two items must be checked in advance. The first relates to the installation/configuration of a communication

channel to acquire data from the NSP32 spectral sensor (USB connection for NSP32 ADK device), and the

second relates to the calibration data file of the NSP32 spectral sensor:

1. Is a USB driver for NSP32 spectral sensor installed on your computer?

2. Is the sensor calibration data file for your NSP32 spectral sensor in the './config' folder, a

subfolder of the folder where the Prism.exe executable is located?

2.1. Hardware installation

A dedicated USB driver for NSP32 ADK device has to be installed on the your computer. About how to

install USB driver for Window, please refer to "NSP32 SDK USB Driver Installation Manual-v1.7.pdf"

document in 'doc' folder. For Mac OS and Ubuntu, you don't need to install USB driver because USB driver for

NSP32 ADK device is installed by default on Mac OS and Ubuntu.

If your Windows machine does not have an appropriate USB driver for the NSP32 spectral sensor installed,

the device property of your NSP32 spectral sensor will look like this. To see device property, Go to

'Start→Device and Printers'.

Fig 2.1 How to check device property of your NSP32 sensor

7

© nanoLambda 2017

If you have installed a USB driver on your computer, you can check if the installation was successful or not as

shown below. If the USB driver is properly installed, you will see the following figures (refer to 'NSP32 SDK

USB Driver Installation Manual-v1.7.pdf').

(a) USB driver is 'NOT' installed (b) USB driver installation is succeeded

Fig 2.2 USB driver installation state

If the driver installation status is different from Figure 2.2 (b), the installation of the USB driver must be failed

and you have to find the cause of the failure. Please consult 'Chapter 7. Frequently Asked Questions' to find any

solution, or contact nanoLambda to have any support (support@nanolambda.net).

Note

NSP spectral sensor's device name on Windows system is used 'apollo (TM) sensor release 2' for

EFM32 MCU-based or 'Presto sensor(TM)' for STM32 MCU'. However, for formal release, device

name will be 'NSP32 spectral sensor'.

2.2. NSP32 SDK installation and Configuration
Installing Prism GUI application on Windows, Mac OS, and Ubuntu (Linux) platforms is very simple. The

NSP32 SDK package is provided in compressed file format ("NSP32_SDK_1_7_package.tar.gz") so you can

copy the NSP32 SDK package to your desired location and extract it.

info@nanolambda.net

8

© nanoLambda 2017

Fig 2.3 NSP32 SDK installation result

Prism GUI application is located under 'nanoLambda/NSP32_SDK/ prism_gui/[platforms]'

folder. Windows version is located in 'win32', Mac OS is 'macOS', Ubuntu version is located in sub folder

named 'ubuntu'.

Figure 2.4 Sensor calibration data file

After installing the NSP32 SDK, you should copy the calibration data file of your NSP32 spectral sensor

directly into the 'config' folder, which is a subfolder of the folder where the Prism.exe file is located. That is,

if the ID of your NSP32 spectral sensor is 'Y8457-23-13-41-0', the file 'sensor_Y8457-23-13-41-

0.dat' should be placed in the 'config' folder (see Figure 2.5). If you lost your calibration data file, please

contact to nanoLambda (support@nanolambda.net).

Figure 2.5 Sensor calibration data file

info@nanolambda.net

9

© nanoLambda 2017

2.3. Run Prism GUI Application
NSP32 ADK consists of a ADK device(NSP32 spectral sensor + a MCU board + F/W), a USB cable(type of

USB micro B) and SDK package. NSP32 spectral sensor

is connected with MCU through SPI and GPIO

interfaces and MCU is connected with your computer through USB connection. When you executes Prism GUI

application from your computer, Prism GUI application performs mainly two things below:

 testing NSP32 ADK device connectivity

 checking the existence of sensor calibration data file

If NSP32 ADK device is not found on any USB ports even though you installed USB driver successfully, then

Prism GUI application will show a warning dialog to you and every UI components will be disabled (see Fig 2-6

(a)). If a NSP32 spectral sensor calibration data file not exists in './config' folder, then Prism GUI application

will show a warning dialog to the user and every UI components will be disabled (see Fig 2-6 (b))

(a) Sensor connection failure happened (b) Sensor calibration data file is not exist

Fig 2-6 Two warning dialog boxes for two abnormal cases

If the USB driver has been successfully installed and the sensor calibration data file for your NSP32 spectral

sensor has been successfully copied to the 'config' folder, you can run the Prism GUI application without

problems and you can get your first spectrum from NSP32 ADK device (see Fig 2-7).

(a) initial state of Prism GUI (b) acquired first spectrum

Fig 2-7 Prism GUI application

10

© nanoLambda 2017

3. UI Components of Prism

3.1. GUI Layouts

Prism GUI application provides simple and easy to use graphical user interface (see Fig 3-1).

Fig 3-1 Overall layout of Prism GUI application

Initially, Prism GUI application gives a very simplified look and feel to the user with the default setting. The

main GUI layout includes very basic functions such as :

 shutter speed setting and average count setting for NSP32 spectral sensor control

 spectrum data acquisition

 background data update

 spectrum data serialization

 various visualization options.

11

© nanoLambda 2017

3.2. UI Components

Prism GUI application consists of 6 UI components:

Icon Meaning Description

NSP32 Spectral Sensor Control

Integration time (read only)

Calculated when SS is

set

Set shutter speed

 via Combo Box widget (select

one shutter speed from pre-

defined list)

 via Edit window (manual input)

 Find optimal SS (Shutter speed)

Set the number of frames used for

averaging

 Do frame moving average

 Update background data

Spectrum Data Serialization

 Load spectrum data from file File type: TXT, CSV

 Save spectrum data to file
File type: PDF, PNG,

BMP, TXT, CSV

Spectrum Data Serialization

 Acquire single spectrum data

Continuous acquisition of spectrum

data

Sensor ID and Light Condition Indicator

Spectrum Data Visualization Options

12

© nanoLambda 2017

Show spectrum information(peak

wavelength, peak power, and

FWHM) on graph

 Show spectrum graph only

Show single color under spectrum

graph

Show rainbow color under spectrum

graph

 Scale spectrum to 0~1 range

 Fit graph to window

 Fix graph to maximum power

Spectrum Graph Visualization

13

© nanoLambda 2017

4. Spectrum Data Acquisition

4.1. Intensity Level Validation
The accuracy of spectrum data from Prism GUI application heavily depends on the sensor response to the

light source. If sensor response to the light source is too weak or strong, that means, the power of the light source

is too weak or too strong or the light source is too far away or too close to the sensor, in which the spectrum will

not be accurate and reliable. Therefore, Prism GUI application checks the intensity level of input light source at

run-time whenever a new sensor data is acquired, and notifies the user with 3 different states : ‘Low’, ‘Normal’,

and ‘Saturated’.

For normal case, the power indicator’s color will be maintained with the ‘BLUE’ color (see Fig 4-1(a) and

(b)). If the sensor data intensity is too low, then the power indicator’s color will change to ‘BLACK’ and

spectrum graph will not be displayed (Fig 4-1(c)). If the sensor data intensity is saturated, the power indicator at

the right-bottom side of main window of Prism GUI application will change to ‘RED’ and spectrum graph will

not displayed (Fig 4-1(d)).

(a) sensor response is LOW (ss=10) (b) sensor response is OPTIMAL (ss=30)

(c) sensor response is VERY LOW (ss=30) (d) sensor response is SATURATED (ss=70)

Fig 4-1 Different behaviors of Prism GUI for different light source status

14

© nanoLambda 2017

nanoLambda recommends that the response level (i.e., input power level) of the NSP32 spectral sensor be

maintained at min 35% ~ max 99% for accurate spectral acquisition. You can see the current intensity level of

your NSP32 from 'power indicator' at the bottom-right side of Prism GUI application.

4.2. Shutter Speed (Exposure Time) Control
NSP32 spectral sensor provides similar functions to the image sensor of a camera such as controlling the

sensitivity to an input light source. Basically, Prism GUI application controls the exposure time of NSP32

spectral sensor by shutter speed value. A specific shutter speed value can be transferred to exposure time

(millisecond unit).

The user can get spectrum data with different photon counts of the light source by changing the shutter speed.

There are two ways to change shutter speed in Prism GUI application. User can select a specific shutter speed

value from list widget and use it for spectrum data acquisition and processing (see Fig 4-2). And user can also

enter a specific shutter speed value to edit box widget and apply it to current shutter speed setting (). If

shutter speed value is increased, then the integration time also increased and the time interval between mouse

click for spectrum data acquisition and acquired data display on graph also increased.

Fig 4-2 Pre-defined shutter speeds

Table 4-1 Transformation table from shutter speed value to integration time

Shutter

Speed

Integration

Time (ms)

Shutter

Speed

Integration

Time (ms)

Shutter

Speed

Integration

Time (ms)

Shutter

Speed

Integration

Time (ms)

1 0.2112 50 8.992 300 53.792 2000 358.432

10 1.824 70 12.576 500 89.632 3000 537.632

20 3.616 100 17.952 700 125.472 5000 896.032

30 5.408 200 35.872 1000 179.232 7000 1254.43

.....

15

© nanoLambda 2017

4.3. Find Optimal Shutter Speed with AE
Prism GUI application provides the 'Optimal shutter speed finding' function to find optimal shutter speed for

NSP32 spectral sensor. This function is similar one with auto-exposure function of camera. Optimal shutter

speed is guarantee the highest SNR that NSP32 spectral sensor can give to the user . If shutter speed is too low

or too high, then spectrum from NSP32 spectral sensor

and Prism GUI application will not be reliable. If user

clicks button on the main toolbar, then Prism GUI application start to scan the optimal shutter speed which

gives maximum SNR under the current illumination condition and changes current shutter speed with the found

optimal speed. Fig 4-3 shows the benefit to find optimal shutter speed by AE. Shutter speed was 10 before the

user runs the AE function(power level is 35.6%). After the user runs the AE function, the found optimal Shutter

speed is 30 (power level is 93.7%). If it is necessary, user can tune this new shutter speed value manually.

(a)Before AE (SS=10, power=35.6%) (b) After AE (SS=30, power=93.7%)

Fig 4-3 Auto-Exposure control to find optimal shutter speed

4.4. Frame Averaging
Prism GUI application provides a frame averaging function to reduce the effect of electrical

noises like random shot noises and to minimize inter-frame variation of NSP32 spectral sensor.

Frame averaging gives the enhanced SNR to user by reducing frame-to-frame variations due to

frame fluctuations, random shot noise, and other. User can select the number of frame average from

a combo-box widget on the main toolbar. The available frame average ranges from 1 to 100. If the

number of frame average is increased, then the overall frame rate will be decreased accordingly.

The recommended minimum number of frame averaging is 30~50, but this number will depend on

your applications and user must select the appropriate number for frame averaging very carefully.

16

© nanoLambda 2017

(a) Average count = 1 (b) Average count = 40

Fig 4-4 High average count can reduces spectrum variation by random noise

4.5. Background Data Acquisition
Depending on the application, the user needs to correct(remove) background signal to obtain a pure spectrum

of the target signal source like LED illuminant. For background correction, Prism GUI application acquire

background filter data(signal) at initialization stage and keep it in the internal memory buffer and use it at run-

time. But, if your measurement conditions are changed (e.g., temperature is changed significantly), then you

must update your background data to acquire correct spectrum. Prism GUI application provides a simple and

easy way to update background filter data. To do this update, you needs to just click 'Update background data'

button() on the main tool bar. If you click that button, then one dialog box will be displayed to confirm to

update the current background data with new one (see Fig 4-5). By selecting 'Cancel', you can cancel

background data update.

Fig 4-5 Displays a confirmation dialog box for background data update

4.6. Spectrum Data Acquisition

There are two UI components for spectrum data acquisition at the main toolbar of Prism GUI application.

Fig 4-6 UI components for spectrum data management

17

© nanoLambda 2017

The user can acquire single spectrum data by clicking the 'Acquire spectrum(Single)' button() and can also

use the 'Acquire spectrum (Continuous)' button () to acquire consecutive spectrum data continuously. Of

course, only one spectrum data will be displayed on the graph at one time.

If the user checks the 'Show spectrum information on the graph' button(), the more detailed spectrum

information including 'peak wavelength', 'peak power', and 'FWHM' will be displayed on the top side of the

graph window. For example, you can see the detailed spectral information of white LED from Fig 4.7 that peak

wavelength is 450nm, peak power is 11515.60, and FWHM is 39 nm.

(a) button is unchecked (b) button is checked

Fig 4-7 Display the detailed information of a spectrum

If you want to change sensor parameters such as shutter speed or frame average count, or to change options

related to the visualization of spectrum data during continuous acquisition of the spectrum, you must first stop

the spectral continuous acquisition. If you start the spectral continuous acquisition again, the spectra obtained

since then will be acquired/calculated and visualized on the graph window based on the changed parameters.

18

© nanoLambda 2017

5. Data Visualization

Prism GUI applications provides several convenient options for your spectrum visualization. An acquired

spectrum can be visualized with 3 different modes: 1) Spectrum graph with face color (rainbow), 2) Spectrum

graph with face color (solid), and 3) Spectrum graph with face color (hollow) (See Fig 5-1).

(a) Face color (rainbow) (b) Face color (solid) (c) Face color (hollow

Fig 5-1 Visualization mode of spectra

For your information, if you select 2'nd mode('Spectrum graph with solid color'), then the face of spectrum

will be filled with a RGB color which is calculated with current spectrum. Fig 5-2 shows two spectrum graphs of

RED and BLUE color screens of Apple iPhone7 with 'solid face color' option.

(a) White (b) Red

(c) Blue (d) Green

Fig 5-2 Visualization of spectra of 4 different colors

19

© nanoLambda 2017

Prism GUI application gives you relative spectrum power. If you want to see your spectrum with a normalized

range like 0~1, you can visualize your spectrum by enabling one button('Scale spectrum to [0~1] range') on tool

bar at left side(→). Fig 5-3 shows a normalized spectrum graph of white LED light source.

Fig 5-3 Y-axis is normalized to [0, 1] range

By default, the Prism GUI application tries to fill the spectrum into the graph window as much as possible. If

the power of the spectrum drops, the spectrum will still fill the graph window. This approach can make it hard

for you to notice the relative differences in the spectrum. The Prism GUI application provides an option to fix

the Y-axis representing the power of the spectrum. If you enable a toolbar button('Fit graph to window vertically')

on the left side(→), the spectrum graph is fixed to the maximum value of the spectrum. If the maximum

power value of the newly acquired spectrum is less than the maximum power value of the previous spectrum, the

Y-axis is fixed to the maximum power value of the previous spectrum. If the maximum power value of the

newly acquired spectrum is greater than the maximum power value of the previous spectrum, the Y-axis is fixed

to the maximum power value of the new spectrum. This allows you to visually and easily observe the difference

in power between successive spectra (see Fig 5-4).

Fig 5-4 Y-axis control: (LEFT) variable mode, (RIGHT) fixed mode to maximum value

20

© nanoLambda 2017

6. Menus

6.1. ‘File’ Menu

The menu of the Prism GUI application is very simple. There are only two menus, 'File' and 'View'. The 'File'

menu has two menus related to serialization of spectral data: 'Load spectrum data' and 'Save spectrum data', and

a menu ('Exit') for terminating the Prism GUI application. The 'View' menu contains a menu ('Show NSP32

sensor info.') that enables the docking widget to show details of the NSP32 spectral sensor and another

menu('Show spectrum table') that displays spectrum data in table format .

Save Spectrum To File
You can save spectrum data by clicking the button() and specifying file name using any of the 5 different

file formats (PDF, PNG, BMP, TXT, and CSV).

Fig 6-1 'Save Spectrum To File' dialog window

In the case of PDF, PNG and BMP format files, the graph area in Prism GUI application will be captured and

saved into PDF format or image format files. More specifically, the detailed information about the spectrum

acquisition conditions like sensor ID, shutter speed, frame average count, and time stamp doesn't saved into PDF,

21

© nanoLambda 2017

PNG and BMP files. So, if you want to save the detailed information and use it later, CSV or TXT file formats

are well fit for your purpose.

Fig 6-2 Spectrum graph in PDF file

Note

Users using the latest Windows operating systems, such as Windows 7 or 10, may fail to save

spectral data to a file using the Prism GUI application. This is a problem related to the execution

rights of the application, so nanoLambda recommends that you always run Prism GUI application

with Administrator privileges. You can save spectral data as a file without problems with

administrator privileges.

The saved file includes the additional information as well as spectrum data (see Fig 6-3).

Fig 6-3 File structure of the save spectrum

22

© nanoLambda 2017

Load Spectrum From File

Also the user can load spectrum data from file ((CSV and TXT formats) by clicking the button () and

selecting a file from the dialog window('Load Spectrum From File') to visualize it as a graph. Fig 6-4 and Fig 6-

5 shows one spectrum data in 'table_stand_spectrum.csv' file is loaded and displayed on Prism GUI application.

Fig 6-4 'Load Spectrum From File' dialog window

Fig 6-5 Loaded and displayed spectrum data file('table_stand_spectrum.csv')

Exit From Prism

If you select 'Exit' sub-menu from 'File' menu, then you'll get a dialog window like Fig 6-6. If you click 'Yes'

button on a dialog window, Prism GUI application will be terminated. If you click 'Cancel', you'll return to

Prism GUI again.

23

© nanoLambda 2017

Fig 6-6 A dialog window for 'Exit' conformation

6.2. 'View' Menu

The 'View' menu contains a menu ('Show NSP32 sensor info.') that enables the docking window to show

details of the NSP32 spectral sensor and another menu('Show spectrum table') that displays spectrum data in

table format. If you select 'Show NSP32 sensor info.' menu, then one docking window will be activated at the left

region of Prism GUI application (See Fig 6-7). You can see more detailed information about your NSP32

spectral sensor from that docking window (sensor ID, wavelength range, and current sensor settings like shutter

speed, integration time and frame average count). If you change shutter speed and/or frame average count from

main tool bar at run-time, then those values in the docking window also will be updated accordingly.

Fig 6-7 Docking window for NSP32 spectral sensor information

If you select 'Show spectrum table' menu, then another docking window will be displayed at the right side of

Prism GUI application (see Fig 6-8). You can see two numerical values of a current spectrum in the table: one is

wavelength and another is relative power value. From this docking window, you can save current spectrum data

in the table to file if it necessary.

24

© nanoLambda 2017

Fig 6-8 Docking window for spectrum data table

6.3. ‘Help’ Menu

When you clicks the 'About Prism' sub-menu from the 'Help' menu, then the 'About Prism' dialog box will pop

up with a brief description of Prism GUI application.

Fig 6-8 'About Prism' dialog box

25

© nanoLambda 2017

7. Frequently Asked Questions

I want to get spectrum data for my application using Prism and NSP32 ADK. What is the

recommended procedure?

Regardless of the type of application, the following procedure is recommended. It is assumed here

that your application measures the LED spectrum.

1. Light intensity control - The NSP32 spectral sensor is very similar to the camera. That is,

enough light is needed to get an accurate spectra (image). There are two ways to provide

enough light for the NSP32. You can use both of these methods at the same time: 1) adjust

the intensity of your LED light source, 2) adjust the distance between the LED light source

and the NSP32 sensor.

2. Adjusting shutter speed of the NSP32 - You can adjust shutter speed to exposing NSP32 to

the incident photons. Increasing this shutter speed will increase the output level of the

NSP32, and decreasing shutter speed will decrease the output level. You can set/adjust the

shutter speed manually. However, this method is time-consuming to find the optimal shutter

speed for your application. The more accurate the shutter speed of the NSP32 is, the more

accurate the spectrum can be obtained. Therefore, it is recommended to use the 'Find optimal

shutter speed' function provided by Prism GUI application at the beginning of the experiment

using NSP32 ADK device. The 'Find optimal shutter speed' feature on the Prism toolbar

automatically finds the optimal shutter speed for you. The NSP32 spectral sensor with

optimal shutter speed guarantees 90 ~ 99% intensity level of the saturation level.

3. Frame average count adjustment - NSP32 spectral sensor acquires raw filter data by snap-

shot method instead of scanning method. Prism and the NSP32 SDK provide the ability to set

the frame average count in order to minimize the effects due to the sensor's own electrical

noise or external environment and to improve the signal-to-noise ratio. You can get a low

noise spectrum by setting this frame average count to a sufficiently high value

(recommended value is 40~50).

If I run Prism GUI application, there is no sensor connected.How can I fix this situation?

26

© nanoLambda 2017

 Make sure that you have installed the USB driver for the NSP32 ADK device for Windows

machine or check if a USB connection to NSP32 ADK device is build or not. In Windows, you can

see the following from the 'Start→Devices and Printers' menu. If you do not have a USB driver

installed, you need to install the USB driver using the manual below.

The USB driver is installed but the NSP32 sensor is not detected.

 There may be a problem with the USB connection. There are two possible reasons.

1. The product quality of USB cable (USB Micro B type) included in the NSP32 ADK could

affect to the USB connection. For this case, try connecting the NSP32 ADK device to

another USB cable to see if that resolves the problem.

2. If replacing the USB cable does not solve the problem, please check the power of USB port

or hub. Especially for embedded computer like RaspberryPi, if you connect NSP32 ADK

device to RaspberryPi directly, then power from Raspberry to NSP32 device would not

enough. For this case, please use a USB hub, connect NSP32 device to USB hub, and use a

dedicated power adapter for your USB hub.

Even with these trials, problem doesn't solved, it is possible that the NSP32 spectral sensor has

failed. If this is the case, contact nanoLambda immediately (support@nanolambda.net).

Spectral data looks different with the desired one or distorted

 Check the light intensity or shutter speed. You have to make sure that the power indicator shows a

power level within 3~99% range. At the beginning, try to use AE to find optimal shutter speed. If the

input power to NSP32 spectral sensor or NSP32 ADK device is too weak, it’ll take several tenth

seconds to find optimal shutter speed by Prism GUI application(actually, NSP32 SDK funtion) and

will return very large number as an optimal shutter speed. For this case, it means that you need to

adjust your setup of light source or optical source. For example, reduce the optical path between your

signal source and NSP32. After then, you can try optimal shutter speed finding with AE again. If

shutter speed value is less than 300, then you will acquire most promising spectrum for your

application.

The acqired spectrum shows large variation(fluctuated).

 The major reason of the variation in spectrum is electrical random noise in NSP32. Of course, if

there is any flickering signal/optical source in your measurement/experiment environment (e.g.,

info@nanolambda.net

27

© nanoLambda 2017

fluorescent lamp), then the temporal variation of spectrum is natural. So, to acquire stable spectrum

data, you have two options (non-exclusive each other):

1. Block NSP32 from the ambient source as many as possible.

2. Increase frame average count (nanoLambda recommends to use 40~50 for frame averaging).

The spectrum is not saved to a file.

 Sometimes, Windows 10 users have difficulty storing spectral data to file. This is caused by a

problem with you's authority. To avoid this problem, you must run ‘Prism.exe’ with administrator

privileges, or store the spectral data on a drive other than the drive on which Windows is installed.

 ►

You can always run Prism as an administrator with the following settings.

 ►

Too slow response of AE

 It’s depends on the intensity of your illuminant or optical signal source. Too low illuminant

power(intensity), takes time to find optimal shutter speed and vice versa.

28

© nanoLambda 2017

Is NSP32 calibrated?

 Yes. Wavelength and power are calibrated to the NIST traceable radio-photometer. You need to

note that the power have relative unit.

What’s backround filter data and when I need to use ‘background filter data update’

function?

 Background filter data are the output of ‘monitoring filters’. NSP32 SDK and Prism GUI

application use this background filter data to compensate background signal before spectrum

reconstruction. This is very important data for spectrum quality, but in normal situation, you don’t

need to care about this. There is a typical situation where you must update your background filter

data by yourself. If the temperature in your test/measurement environment are changed or

continuously changing, then you must update old background filter data with new one before acquire

spectrum.

1. If your environment is thermally stable, then you need to update your background filter data

just one time.

► Update background filter data → acquire 1’st spectrum → acquire 2’nd spectrum …… → acquire

N’th spectrum

2. If your environment is thermally unstable and temperature is changed randomly, then you must

update your background filter data whenever you try to acquire one spectrum.

► Update background filter data → acquire 1’st spectrum → update background filter data → acquire

2’nd spectrum …… → update background filter data → acquire N’th spectrum

Don’t we need to cover NSP32 sensor before update backround filter data with new one?

 YES. The NSP32 acquires and compensates background data in a different way than an off-the-

shelf commercial spectrometer. NSP32 spectral sensor has several monitoring filters what are

sensitive to the thermal/temperature changes in the environment. Those filters doesn’t affected with

optical input. To use ‘Background filter data update’ function, you don’t need to cover NSP32 sensor

with something to make NSP32 totally dark.

