
Brief

Name: nanoLambda NSP32 C/C++ API for MCU

Type: API

Version: 1.0.0

Language: C/C++

Platform: MCU

Introduction

The API is designed for use on general MCU applications coded in C/C++. By using

this API, users can easily control NSP32 module by high level function calls, without

dealing with the raw packet bytes and timing sequences.

Note: General concepts are illustrated in NSP32 datasheet. Please see datasheet in

advance.

Architecture & Concepts

1) API architecture

Note: different classes/structs and their corresponding source files are listed in different colored

blocks.

The architecture contains two major parts.

i) Controller and adaptor

 NSP32 class is the main controller that deals with commands, packets,

timing sequences, error detections, and other flow logic.

 IMcuAdaptor class (abstract class) acts as an interface that defines MCU

dependent behaviors, such as GPIO pin control, SPI transmission, UART

transmission.

 NSP32 class interacts with NSP32 module through IMcuAdaptor.

Once we implement an adaptor for a certain MCU (e.g. ArduinoAdaptor),

NSP32 class can thus work on that MCU through the specific adaptor.

Note: In the API source files, a TemplateAdaptor class is provided which

implements IMcuAdaptor. If you need to implement a new adaptor, we

suggest to start with TemplateAdaptor.cpp and follow the TODO instructions

inside. You are also invited to refer our [/examples/Arduino/] and

[/examples/nRF52/] examples, in which the adaptor for Arduino and nRF52

are implemented.

ii) Data

We define three structs (which are placed in orange blocks in the picture) to

encapsulate wavelength, spectrum, and XYZ data. Users can easily extract

these structs from the return packet, and retrieve their interested information.

Example:

Please refer [/examples/Arduino/] examples for complete demonstration.

2) Synchronous (sync.) and asynchronous (async.) commands

For NSP32, some commands can be done immediately and we can fetch the

results right away (e.g. CMD_GET_SENSOR_ID). We call these synchronous

(sync.) commands. However, other commands are time consuming and we have to

come back later to fetch the results (e.g. CMD_ACQ_SPECTRUM). We call these

asynchronous (async.) commands.

Sync. commands are:

i) CMD_HELLO

ii) CMD_STANDBY

iii) CMD_GET_SENSOR_ID

iv) CMD_GET_WAVELENGTH

Async. commands are:

i) CMD_ACQ_SPECTRUM (and fetch the result by CMD_GET_SPECTRUM)

ii) CMD_ACQ_XYZ (and fetch the result by CMD_GET_XYZ)

Note: For async. commands such as CMD_ACQ_SPECTRUM, API handles the

complete cycle (e.g., from starting acquisition to fetch results) inside. So you will

see only NSP32::AcqSpectrum() function, but no NSP32::GetSpectrum() function.

Due to this reason, if you investigate the FUNCTION_CODE byte in the return

packet of NSP32::AcqSpectrum(), you'll find the byte is CMD_GET_SPECTRUM,

instead of CMD_ACQ_SPECTRUM.

Please refer [/examples/Arduino/] examples to see how to use sync. and async.

commands respectively with the API.

Customization

There are two areas users can do customization while using the API.

1) Customize a MCU adaptor

If users are using Arduino or nRF52, the corresponding adaptor can just be found

in our examples. Otherwise, as described in "Architecture & Concepts", users

need to implement a specific adaptor for the users’ selected MCU.

2) Customize a C wrapper

This API is implemented in C++. So if users need to use it from a C source code

(e.g. main.c), users might need a C wrapper (to wrap the API). Please refer the

[/examples/nRF52/(SpectrumMeter/NanoLambdaNSP32)] example, which

contains NSP32CWrapper.h and NSP32CWrapper.c. Then compile the

NSP32CWrapper.c with C++, and compile the main.c with C (usually the file type

settings can be changed within the IDE).

Development Tool Recommendation

IDE with C++ compiler

How to Use

1) Put your specific MCU adaptor files (e.g. FooAdaptor.h, FooAdaptor.cpp) into

"NanoLambdaNSP32" folder.

2) Add "NanoLambdaNSP32" folder to your project.

3) In your IDE project settings, add "NanoLambdaNSP32" folder to the include

paths.

4) Write codes (please refer our examples).

5) Build.

API Features

1) Auto checking: upon NSP32 module wakeup / reset, a series of internal checking

procedure is performed. If any malfunction is detected, NSP32 module will not

generate the "ready trigger". If you are using our API for MCU, upon calling

NSP32::Init() or NSP32::Wakeup(), the API also performs a SPI / UART check

(by sending CMD_HELLO). If the check fails, API will reset NSP32 module and

try again until successful.

2) Auto wakeup: NSP32 module has two power modes: "active mode" and "standby

mode". In standby mode, no commands would be accepted. If you are using our

API for MCU, it auto checks NSP32 module's current mode before sending

commands, and auto wakes it up if necessary.

Note: When power consumption is in concern, the best practice is to standby

NSP32 module if you don't need it for a while.

3) Packet error detection and auto retry: The API monitors and validates each return

packet. In case a packet error is detected (due to transmission error), API will

automatically resend the command until successful.

4) Both SPI and UART are supported: By simply specifying the desired data channel

(SPI or UART) when creating NSP32 object, the API can handle the transmission

details of both channel types.

Example:

or

5) Both return packet raw bytes and easy-to-use structs are available: In most cases,

users extract their desired information (struct data) from the return packet by

calling NSP32::Extract...() functions. However users can also call

NSP32::GetReturnPacketPtr() to access the return packet raw bytes if needed.

6) Support MCU as a forwarder: In the scenario MCU acts as a forwarder, see

picture below for example, to forward command packets and return packets

between the NSP32 module and a smart phone, so that the smart phone can

wirelessly control NSP32 module and get the spectrum data. Our API provides a

very simple way to perform this forwarding task by calling

NSP32::FwdCmdByte() and NSP32::UpdateStatus(). Please refer

[/examples/nRF52/] example for complete demonstration (see the main loop in the

main() function).

Note: Users can replace the BLE with WIFI or other wired/wireless transmission protocols.

API Reference

1. html version: [/doc/reference_html/index.html]

2. pdf version: [/doc/reference.pdf]

