
Brief

Name: nanoLambda NSP32 C# API for desktop

Type: API

Version: 1.0.0

Language: C#

Platform: desktop

Introduction

The API is designed for use on .NET applications. By using this API, users can easily

control NSP32 module by high level function calls, without dealing with the raw

packet bytes and packet queueing / parsing things.

Note: General concepts are illustrated in NSP32 datasheet. Please see datasheet in

advance.

Architecture & Concepts

1) API architecture

Note: different classes/structs and their corresponding source files are listed in different colored

blocks.

The architecture contains three major parts.

i) Controller

 NSP32 class is the main controller that deals with commands, packets,

error detections, packet queueing / parsing, and other flow logic.

ii) Delegate and notification function

 DataChannelSendDataDelegate delegate

NSP32 sends out command packets through

DataChannelSendDataDelegate, and user program sends out the bytes via

available transmission protocol.

 NSP32.OnReturnBytesReceived()

User program calls NSP32.OnReturnBytesReceived() and feeds any bytes

received from NSP32 module.

 OnReturnPacketReceivedDelegate delegate

When a return packet is successfully parsed by NSP32, NSP32 will notify

the user program by OnReturnPacketReceivedDelegate.

iii) Data

ReturnPacket class encapsulates the return packet received from NSP32

module. We also define three classes (which are placed in orange blocks in the

picture) to encapsulate wavelength, spectrum, and XYZ data. Users can easily

extract these class objects from ReturnPacket object, and retrieve their

interested information.

Example:

Note:

For commands like CMD_ACQ_SPECTRUM and CMD_ACQ_XYZ, API handles the

complete cycle (from starting acquisition to fetch results) inside. So you will see only

NSP32.AcqSpectrum() function, but no NSP32.GetSpectrum() function. Due to this reason, if

you investigate the FUNCTION_CODE byte in the return packet of NSP32.AcqSpectrum(),

you'll find the byte is CMD_GET_SPECTRUM instead of CMD_ACQ_SPECTRUM. That's

why in the above example, we use "case CmdCodeEnum.GetSpectrum:".

Please refer [/examples/] examples for complete demonstration.

Development Tool Recommendation

Visual Studio 2017

Pre-built dll

The pre-built dll is located at

[/src/NanoLambdaNSP32/bin/Release/NanoLambdaNSP32.dll].

If you do want to rebuild it, you can follow these steps:

1) Open [/src/NanoLambda.sln] in Visual Studio.

2) Build the solution.

3) You will get the dll at

[/src/NanoLambdaNSP32/bin/Release/NanoLambdaNSP32.dll].

How to Use

1) In Visual Studio "Solution Explorer", right click "References" under your

project.

2) Choose "Add Reference...", browse to "NanoLambdaNSP32.dll" and add it.

3) Write codes (please refer our examples).

4) Build your project.

API Features

1) Packet error detection: The API monitors and validates each return packet. In

OnReturnPacketReceivedDelegate, you can use ReturnPacket.IsPacketValid

property to check if any packet error occurred.

2) Both return packet raw bytes and easy-to-use data objects are available: In most

cases, users extract their desired information (data object) from the return packet

by calling ReturnPacket.Extract...() functions. However users can also use

ReturnPacket.PacketBytes property to access the return packet raw bytes if

needed.

3) Command queue management: Normally, users should send new command to

NSP32 module only after the previous command returns. To make the flow

control easier in user's program, our API hosts an internal command queue.

Users can just call API to send multiple commands at once, and the API will

make sure each command goes to NSP32 module at the right time.

Note

In APIs for desktop, there is NSP32.Standby() but no NSP32.Wakeup(), due to the

lack of GPIO pins on desktop to wakeup / reset NSP32 module.

Note: users should call NSP32.Standby() only if there is an extra designed mechanism

to wakeup / reset NSP32 module (e.g. a hardware push button).

API Reference

1. html version: [/doc/reference_html/index.html]

2. pdf version: [/doc/reference.pdf]

