
Brief 

Name: nanoLambda NSP32 Java API for Android and desktop 

Type: API 

Version: 1.0.0 

Language: Java 

Platform: Android / desktop 

  



Introduction 

The API is designed for use on Android or desktop applications coded in Java. By 

using this API, users can easily control NSP32 module by high level function calls, 

without dealing with the raw packet bytes and packet queueing / parsing things. 

 

Note: General concepts are illustrated in NSP32 datasheet. Please see datasheet in advance. 

 

Architecture & Concepts 

1) API architecture 

 

Note: different classes/structs and their corresponding source files are listed in different colored 

blocks.  

 

The architecture contains three major parts. 

i) Controller 

 NSP32 class is the main controller that deals with commands, packets, 

error detections, packet queueing / parsing, and other flow logic. 

ii) Interface and notification functions 

 DataChannel interface 

NSP32 sends out command packets through DataChannel interface, and 

user program sends out the bytes via available transmission protocol. 

 NSP32.OnReturnBytesReceived() 

User program calls NSP32.OnReturnBytesReceived() and feeds any bytes 

received from NSP32 module. 

 ReturnPacketReceivedListener interface 

When a return packet is successfully parsed by NSP32, NSP32 will notify 

the user program by ReturnPacketReceivedListener. 



iii) Data 

ReturnPacket class encapsulates the return packet received from NSP32 

module. We also define three classes (which are placed in orange s in the 

picture) to encapsulate wavelength, spectrum, and XYZ data. Users can easily 

extract these class objects from ReturnPacket object, and retrieve their 

interested information. 

 

Example: 

 
Note: 

For commands like CMD_ACQ_SPECTRUM and CMD_ACQ_XYZ, API handles the 

complete cycle (from starting acquisition to fetch results) inside. So you will see only 

NSP32.AcqSpectrum() function, but no NSP32.GetSpectrum() function. And due to this 

reason, if you investigate the FUNCTION_CODE byte in the return packet of 

NSP32.AcqSpectrum(), you'll find the byte is CMD_GET_SPECTRUM instead of 

CMD_ACQ_SPECTRUM. That's why in the above example, we use "case GetSpectrum:". 

 

Please refer [/examples/desktop/] examples for complete demonstration. 

 

Development Tool Recommendation 

JDK 8 

 

Pre-built jar 

The pre-built jar is located at [/src/NanoLambdaNSP32.jar]. 

If you do want to rebuild it, you can follow these steps: 

1) Windows users can run [/src/build.bat] batch file, and you will get the jar at 

[/src/NanoLambdaNSP32.jar]. 

2) Linux or macOS users can run [/src/build.sh] by terminal commands: 

 

And you will get the jar at [/src/NanoLambdaNSP32.jar]. 

 



How to Use 

1) Compile and run your project along with "NanoLambdaNSP32.jar" (the detailed 

steps depend on your development environment). 

2) You can also view [/examples/desktop/Beginner/run.bat] to see how we do it by 

JDK commands. 

 

API Features 

1) Packet error detection: The API monitors and validates each return packet. In 

ReturnPacketReceivedListener.OnReturnPacketReceived(), you can use 

ReturnPacket.IsPacketValid() to check if any packet error occurred. 

2) Both return packet raw bytes and easy-to-use data objects are available: In most 

cases, users extract their desired information (data object) from the return packet 

by calling ReturnPacket.Extract...() functions. However users can also use 

ReturnPacket.PacketBytes() to access the return packet raw bytes if needed. 

3) Command queue management: Normally, users should send new command to 

NSP32 module only after the previous command returns. To make the flow 

control easier in user's program, our API hosts an internal command queue. 

Users can just call API to send multiple commands at once, and the API will 

make sure each command goes to NSP32 module at the right time. 

 

Note 

In APIs for Android / desktop, there is NSP32.Standby() but no NSP32.Wakeup(), due 

to the lack of GPIO pins on Android / desktop to wakeup / reset NSP32 module. 

Note: users should call NSP32.Standby() only if there is an extra designed mechanism 

to wakeup / reset NSP32 module (e.g. a hardware push button). 

 

API Reference 

1. html version: [/doc/reference_html/index.html] 

2. pdf version: [/doc/reference.pdf] 


