
Brief

Name: nanoLambda NSP32 Python API for RPi

Type: API

Version: 1.0.0

Language: Python

Platform: Raspberry Pi (RPi)

Introduction

The API is designed for runing on Raspberry Pi applications coded in Python. By

using this API, users can easily control NSP32 module by high level function calls,

without dealing with the raw packet bytes and timing sequences.

Note: General concepts are illustrated in NSP32 datasheet. Please see datasheet in advance.

Architecture & Concepts

1) API architecture

Note: different classes/structs and their corresponding source files are listed in different colored

blocks.

The architecture contains two major parts.

i) Controller and adaptor

 NSP32 class is the main controller that deals with commands, packets,

timing sequences, error detections, and other flow logic.

 RPiAdaptor class deals with RPi specific behaviors, such as GPIO pin

control, SPI transmission, UART transmission.

 NSP32 class interacts with NSP32 module through RPiAdaptor. NSP32

creates and uses RPiAdaptor object internally. Users don't create any

RPiAdaptor object by their own.

ii) Data

ReturnPacket class encapsulates the return packet received from NSP32

module. We also define three classes (which are placed in orange blocks in the

picture) to encapsulate wavelength, spectrum, and XYZ data. Users can

extract these class objects from ReturnPacket object, and retrieve their

interested information.

Example:

Please refer [/examples/] examples for complete demonstration.

2) Synchronous (Sync.) and asynchronous (async.) commands

For NSP32, some commands can be done immediately, and we can fetch the

results right away (e.g. CMD_GET_SENSOR_ID). We call these synchronous

(sync.) commands. However, other commands are time consuming, and we have

to come back later to fetch the results (e.g. CMD_ACQ_SPECTRUM). We call

these asynchronous (async.) commands.

Sync. commands are:

i) CMD_HELLO

ii) CMD_STANDBY

iii) CMD_GET_SENSOR_ID

iv) CMD_GET_WAVELENGTH

Async. commands are:

i) CMD_ACQ_SPECTRUM (and fetch the result by

CMD_GET_SPECTRUM)

ii) CMD_ACQ_XYZ (and fetch the result by CMD_GET_XYZ)

Note:

For async. commands like CMD_ACQ_SPECTRUM, API handles the complete cycle (from

starting acquisition to fetch results) inside. So you will see only NSP32.AcqSpectrum() function,

but no NSP32.GetSpectrum() function. Due to this reason, if you investigate the

FUNCTION_CODE byte in the return packet of NSP32.AcqSpectrum(), you'll find the byte is

CMD_GET_SPECTRUM instead of CMD_ACQ_SPECTRUM.

Please refer [/examples/] examples to see how to use sync. and async. commands

respectively with the API.

Development Tool Recommendation

Python 3.5 or above (Python 2 doesn't work)

The API utilizes the following modules, please make sure they are installed under

your environment.

1) RPi.GPIO [https://pypi.org/project/RPi.GPIO/]

2) spidev [https://pypi.org/project/spidev/]

3) pySerial [https://pypi.org/project/pyserial/]

How to Use

1) Copy [/src/NanoLambdaNSP32.py] to your project folder.

2) Import "NanoLambdaNSP32" module and write codes (please refer our

examples).

API Features

1) Auto checking: Upon NSP32 module wakeup / reset, a series of internal

checking procedure is performed. If any malfunction is detected, NSP32 module

will not generate the "ready trigger". If you are using our API for RPi, upon

calling NSP32.Init() or NSP32.Wakeup(), the API also performs a SPI / UART

check (by sending CMD_HELLO). If the check fails, API will reset NSP32

module and try again until successful.

2) Auto wakeup: NSP32 module has two power modes: "active mode" and "standby

mode". In standby mode, no commands would be accepted. If you are using our

API for RPi, it auto checks NSP32 module's current mode before sending

commands, and auto wakes it up if necessary.

Note: When power consumption is in concern, the best practice is to standby

NSP32 module if you don't need it for a while.

3) Packet error detection and auto retry: The API monitors and validates each return

packet. In case a packet error is detected (due to transmission error), API will

automatically resend the command until successful.

4) Both SPI and UART are supported: By simply specifying the desired data

channel (SPI or UART) when creating NSP32 object, the API can handle the

transmission details of both channel types.

Example:

or

5) Both return packet raw bytes and easy-to-use data objects are available: In most

cases, users extract their desired information (data object) from the return packet

by calling ReturnPacket.Extract...() functions. However users can also use

ReturnPacket.PacketBytes property to access the return packet raw bytes if

needed.

API Reference

1. html version: [/doc/reference_html/index.html]

2. pdf version: [/doc/reference.pdf]

